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The purpose of this paper is to provide a peridynamic (PD) model for the prediction of the
viscoelastic creep deformation and failure model. The viscoelastic characteristic consists of
several stages, namely primary creep, secondary creep, tertiary creep and fracture. A non-
linear viscoelastic creep equation based on the internal state variable (ISV) theory covering
four creep stages and PD equations are used. The viscoelastic equation is inserted into the
PD equation to derive a PD model with two time parameters, i.e., numerical time and vis-
coelastic real time. The parameters of the viscoelastic equation are analyzed and optimized.
A comparison between numerical and experimental data is performed to validate this PD
model. The new PD model for nonlinear viscoelastic creep behavior is confirmed by an ac-
ceptable similarity between the numerical and experimental creep strain curves with an error
of 15.85%. The nonlinearity of the experimental and numerical data is sufficiently similar as
the error between the experimental and numerical curves of the secondary stage strain rate
against the load is 21.83%. The factors for the errors are discussed and the variation of the
constants in the nonlinear viscoelastic model is also investigated.
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1. Introduction

Current practice of viscoelastic creep prediction relies on the finite element method (FEM).
The major drawback of the conventional FEM is that it cannot include crack initiation and
propagation. It suffers from discontinuous stress and strain fields that require special treatment
of singularities. Therefore, this study presents a method for predicting material failure under
continuous loading using peridynamic (PD) theory (Silling, 2000; Foster et al., 2009; Hu et
al., 2013), which is a significant departure from the generally accepted FEM. This approach
accounts for material failure on its own, without the need for external crack growth criteria
and post-processing. Failure occurs when and where it is energetically favorable. The PD theory
has accurately predicted crack properties in many experimental studies under quasi-static and
dynamic loading, such as the brittle fracture pattern (Agwai et al., 2011), crack propagation in
multilayered structures (Warren et al., 2009), structural stability (Kilic and Madenci, 2009) and
crack branching (Ha and Bobaru, 2011). The PD formulation is applied to viscoelastic creep
behavior in this work to further extend the numerical model.

Materials that exhibit both solid-like and fluid-like properties are categorized as viscoelastic
materials (Xu and Yuan, 2011). Most biological materials exhibit viscoelastic behavior, e.g.,
polymers, fibers, tissues such as tendons and ligaments. Some metals exhibit viscoelastic behavior
at elevated temperature. Two important tests to describe time-dependent viscoelastic properties
are the creep test and the relaxation test. This work contributes to an extension of the PD model
through application of the numerical theory on the viscoelastic creep behavior. The application is
made by replacing the deformation component in the PD equation with the viscoelastic equation.
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2. Peridynamic formulation

In the formulation work, the PD formulation, as given in equation (2.1), is the same as the con-
ventional finite element equation of motion, except for the internal force or bond force equation,
i.e., the first component in equation (2.1). The conventional differential component in FEM is
replaced by an integral component in PD. The body forces b correspond to the conventional
equation. This bond force equation has the dimension of force per unit volume F/V

2
p%—tl; = /de/f(u(X,t),u(x',t),x,x',t) + b(x,t) (2.1)
R
In the PD model, a particle x interacts only with another particle x” within the horizon of
the particle x, as shown in Fig. la. u is the displacement of all particles. The horizon in the
3-dimensional model has the shape of a sphere. The radius of the horizon R varies between 2 and
3 times the discretization length, where the internal length is the measure of nonlocal behavior, as
shown in Eq. (2,2). When R is greater than 3/, the time required for the process increases, while
when R is less than 2[, the model behaves like in the conventional local continuum mechanics.
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Fig. 1. (a) Horizon of a particle in the PD model. (b) Definition of £ and n in the PD model
(Xu and Yuan, 2011)

The component f is a pairwise force function with a unit force per unit volume squared as
stated in Eq. (2.2). It describes the strain behavior of each bond between 2 particles. n is the
elongation of bonds between nodes, £ is the initial distance between nodes as shown in Fig. 1b,
s is strain where s = /£, and ¢; is the material deformation coefficient (Warren et al., 2009).
The exponential component in Eq. (2.2) is added to make more distant particles within the
horizon of the particle x exert less influence on the particle x than the closer particles (Oterkus
et al., 2012; Kilic et al., 2009; Weckner and Abeyaratne, 2005). To obtain a viscoelastic bond, a
viscoelastic constitutive equation is inserted into the constant ¢; in the bond force equation

3 €1\?
fn,&) = ‘512’ eXP[—(‘l—‘) Jers (2.2)

3. Creep test material modelling

In this study, a nonlinear viscoelastic equation is used and inserted into the PD bond force equa-
tion. Nonlinearity of a viscoelastic material means that the strain of the material is nonlinear with
the applied stress. There are several types of nonlinear viscoelasticity, namely nonlinearity at
high temperatures, nonlinearity at large deformations, and material nonlinearity. Most polymers
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are treated as nonlinear viscoelastic materials. In this work, nonlinearity at high temperatures is
not considered because the temperature is constant. A potential nonlinear viscoelastic equation
has been chosen and the formula is based on the thermodynamic theory of irreversible internal
state variables (ISV).

The proposed viscoelastic formula can describe the four stages of creep deformation (Zhang
et al., 2014). The creep strain results from an internal structural adjustment, and the different
creep stages are associated with different thermodynamic properties in terms of a flow potential
function and energy dissipation rate. During the primary and secondary creep stages, the ther-
modynamic state of the material system tends to equilibrate spontaneously. These stages can
be described by kinetic equations of ISVs, which can be derived by a single flow potential func-
tion in which the energy dissipation rate decreases monotonically with time. These stages can
also be considered as “damage-free” stages. For the tertiary creep and fracture stages, multiple
potentials are needed to describe the evolution of ISVs, so that the thermodynamic state of the
material system tends to deviate from the steady strain rate state.

In Rice thermodynamic theory, there are three sets of dimensionless macroscale ISVs intro-
duced i.e. v, A and x. v and X\ are used to describe intrinsic structural changes in viscoelastic
and viscoplastic processes respectively, and y is used to account for the damage effect. The Rice
irreversible ISV thermodynamics based on a constrained equilibrium state adopts that the state
of a solid material at any given time can be described entirely by the stress o or strain €, the
temperature § and a set of scalar internal state variables ({1, (2, ..., (,) that represent physical
changes of microstructures of the material (Rice, 1971). These four variables are referred to as
thermodynamic state variables. The specific free energy ¢ and specific complementary energy
are the main thermodynamic potential functions. They satisfy the Legendre transform (Rice,
1971; Yang et al., 2005) as follows

0(,0,() +¢(0,0,{)=€:0 (3.1)

Considering the neighbouring constrained equilibrium states, the equation corresponding to
different sets of state variables can be written in thermostatic form as shown in the following
equation

1
6 = € : 00+ 057 + 7 fadCa (3.2)

The Gibbs free energy density ¢ has been presented in a paper (Schapery, 1999) and it is
related to ¢ in the usual way

p=¢—c:0 (3.3)

Considering equation (3.1), we can obtain

b =-¢ (3-4)

According to the Gibbs free energy density function, the complementary energy density func-
tion ¥ can be described as follows

1
¢ = we + AZ’Y - 53’}/2 + Pa)a (35)

where 1., A, B and P, may possibly be the state functions of stress o, temperature 6 and
damage . From the third component of Eq. (3.2), the thermodynamic force can be obtained
from the complementary energy density by using the following function

o

fa = V% (3'6)
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This equation can be separated into three types of forced, i.e. the elastic force, plastic force and
damage force as stated below in unit volume

fo= 4, By a9 _p a=19)
oy P Oda (3.7)
8 Y. OAy  OP, '
fo=20 Ot Of2 | OFa)

C0x Ox  Ox dx

In Eq. (3.7)3, the damage development under elastic and viscoelastic deformation can be ne-
glected (Voyiadjis and Zolochevsky, 2000). Thus, Eq. (3.7)3 can be simplified into

9 0P,

- 5= 5 (38)

Fx

The strain equation can be constructed by considering the relationship between the strain
and specific complementary energy as in Eq. (3.9); and the relationship between the specific
complementary energy and thermodynamic force as in Eq. (3.9)2

_ 9
5_80'

The strain equation can be expressed in terms of viscoelastic and viscoplastic strains as follows

9(0.6,¢) = 7 fota (39)

e = g’ 4 WP (3.10)
where
0A 0P,
ve _ 8—0_2’Y+C e = a_;)\a (311)

The viscoelastic strain equation €”¢ includes the initial elastic strain and hardening effect.
Since the hardening effect is also provided by the viscoplastic strain equation, €*P as in Eq.
(3.13), thus the viscoelastic strain equation, "¢ can be replaced by the initial elastic strain,
€® alone with E, as the elastic modulus

e = — (3.12)

The viscoplastic strain behavior can be described as follows

g’ =Dy [)\1 + (1 + X))\Q + b)\QX] Dy =ay— L (313)
V3
The parameter Ay is used to describe the hardening effect and both Ao and x represent the
softening effect and damage. The parameters Ag and x have a symbiotic relationship; x has an
evolution process only when Ay develops.
In the one-dimensional form, A1, Ao and y are given by ramp equations as shown below

. 1 1
)\1=I~€1D2<J—0y—D—2k}\1> Dgzﬁ—ag
(L+bx)o —oz\P bAao\ 2 (3:.14)
Ny — T EAY T e . X 2 A
2 /'62< o > X = Rse < - > sgn (Az)

Both Macaulay’s brackets in the equations for A1 and Ay are the ramp equation as shown below

(X) =

{ X X >0 (3.15)

0 X <0
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and the ramp equation in equation for y is as following

1 X >0
sgn(X)=4 0 X=0 (3.16)
-1 X <0

All the other unknowns, 1, k9, k3, Ds, k, as, b and p are parameters of the equation.
o, is regarded as the mean internal stress (Aurbertin et al., 1991). These creep parameters
can be evaluated by fitting the numerical creep graph with the experimental creep data using
the least square optimization method. Generally, the viscoelastic and viscoplastic deformations
in the creep process can be distinguished in the unloading stage. During the unloading stage,
the material with viscoelastic behavior returns to its original length while the material with
viscoplastic behavior exhibits permanent deformation. When a viscoelastic material experiences
prolonged creep deformation, viscoplastic behavior is initiated in the material once some limits
are exceeded as stated in Egs. (3.14).

The behavior of nonlinear strain as a function of the applied load can be incorporated into the
viscoelastic equation by applying the Ramberg-Osgood equation (Irgens, 2008). This equation
(Eq. (3.17)) was originally developed to describe the nonlinear relationship between stress and
strain in materials near their yield point

o oo oo\ 1
5:—+a2—( )

- - (3.17)

Oy

The parameter og is the applied stress, F is the Young modulus, o is the yield strength, cs and
n are temperature dependent material constants. The first and second term in the formula
represent the elastic and plastic parts, respectively. It is assumed that the nonlinearity of strain
with respect to the applied load occurs only in the secondary and tertiary creep stages, since
the strain in the primary stage behaves linearly due to the low strain value. Therefore, the
Ramberg-Osgood equation is added as a multiplier to the constant ks, which determines the
strain rate of the secondary creep stage. The result is that only the strains at the secondary and
tertiary stages are nonlinear with the applied load. The Ramberg-Osgood multiplier M is the
nonlinear part in Eq. (3.17) as follows

70 )”_1 (3.18)

M=1+a2(0_—
Y

where the constant stress op and the Young modulus E are excluded. In equation (3.13), the
parameter A is a component of the viscoplastic strain rate £’ where it defines the secondary
creep stage gradient. Since A is directly proportional to the applied load as shown in Eq. (3.14)1,
the nonlinear relationship between the gradient of the secondary creep stage and the applied
load in the nonlinear creep experiment can be a measure of the nonlinearity of the material.
Therefore, the values of the parameters o,, as and n in Eq. (3.17) can be obtained by the
least square optimization method, by comparing Eq. (3.18) with the experimental curve of the
gradients of the secondary creep stage as a function of the applied load.

The PD model with viscoelastic properties is obtained by substituting the viscoelastic creep
equations as in Egs. (3.10) to (3.18) into the material constant ¢; in the PD bond force in
Eq. (2.2). The creep modulus function «, i.e., the strain-to-stress ratio function (e/o) of this
nonlinear equation must be derived from the viscoelastic equation before substitution. However,
since the nonlinear equation consists of several ramp functions, it is quite complex to derive the
creep modulus function of this equation. For simplicity, this equation is calculated analytically to
obtain a creep curve consisting of the primary, secondary, and tertiary stage. Then, the analytical
creep curve is used as a reference for the numerical test by substituting the data of the curve
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into the creep modulus « in the equation PD bond force as in Eq. (3.23). The time parameter
in the viscoelastic equation is the real time tg.

The critical strain is the value of the strain in the creep curve at which the transition from
the secondary stage to the tertiary stage occurs. The value of the critical strain is determined by
looking at the creep curve, where the value of the strain at which the strain deviates from the
straight line of the secondary creep stage is the critical strain. In experiments, it is observed that
at any value of the load, the critical strain is approximately the same (Drozdov, 2010). However,
the viscoelastic equation has a disadvantage that the critical strains of the creep curves vary
greatly for different values of applied loads. Alternatively, the reference creep curve is altered in
which, initially, there is no tertiary stage behavior in the curve. The two damage equations, A
and x are initially disabled to remove the tertiary stage behavior. A single value for the critical
strain is set, obtained from the experimental data. When the strain of a bond reaches the critical
value, the damage equations ()\ and x) are activated to add the tertiary stage behavior.

In demonstrating fracture, the response function i.e., Eq. (2.2) can be modified by adding a
history-dependent scalar-valued function p (Silling and Askari, 2005) as follows

&+ exp[_(lﬁl

2
€)= ey =) Jersuen (3.19)

where the function p can be described as

! if s(t',&) <sp forall 0<t' <t
HEt) = { 0 otherwise (3.20)

in which sg is the fracture stretch. The value of sq is determined considering the experimental
data. During numerical calculation, the strain of each bond is continuously monitored. When
the strain of a bond exceeds the value of sg, the bond breaks and the two nodes connected by
the bond no longer interact with each other. As can be seen in Fig. 2, the broken bond has the
value 1 equal to zero, and thus the bond force of the bond also becomes zero. As the number of
broken bonds increases, a crack forms and eventually total fracture occurs.

A Bond force

—
S0 Stretch

Fig. 2. The relationship between the bond force and stretch of a bond and the definition of
fracture stretch sg

The creep modulus « is introduced to put the nonlinear viscoelastic creep equation into the
PD equation. The creep modulus describes the elongation of a viscoelastic material, and it is
the ratio of strain to stress

alty) = g (3.21)

In Eq. (3.21), the scalar bond force function as stated in Eq. (2.1) can be obtained by using
the stress equation o = f/A, where A is the cross-sectional area

Al A

atr) = E? (3.22)
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The elongation, Al and the initial length [y in Eq. (3.22) are replaced with |n| and |&|, respectively

_ In[A
€1 f
By arranging the bond force f as the subject of Eq. (3.23), the following scalar viscoelastic

bond force equation is obtained

In|A

f(n,& tr) = Elalin) (3.24)

In Eq. (2.2) f = ¢1s. Thus, the material constant ¢; for a time-dependent viscoelastic material

a(tr) (3.23)

is

A

tp) = —— 3.25
c1(tr) i) (3.25)
Substituting Eq. (3.25) into Eq. (2.2), a creep viscoelastic bond force equation derived
_&+nm €A

The main difference between the elastic and viscoelastic PD bond force equations is the addi-
tional time parameter (real time tg) in the creep modulus a(tg). The value of A is unknown
since there is no cross-sectional area between two nodes and, for simplicity, it is set to 1. Each
bond or connection between two nodes acquires one bond force equation. In Eq. (2.1), the first
component, i.e., the integral equation, sums all bond forces between the node x and other nodes
within the horizon of the node x.

The total bond force is then added with external forces b(x,¢) which include all-direction
fixtures on the nodes at the bottom surface of the specimen and the upward loads on the nodes
at the top surface of the specimen. The result of the addition is a resultant force of the node Fp,
which has the dimension of force per unit volume. Referring to Eq. (2.1), the acceleration of the
node can be determined by dividing the resultant force by density of the material p as shown
below

8211 o F R
o p

It is in the nature of an integral-based numerical model such as the PD model that the
simulation yields a dynamic result that fluctuates endlessly. In elastic peridyamic tests, the
nodes fluctuate permanently, whereas in viscoelastic PD tests, the fluctuation of the nodes is
damped by the existing dashpot properties. Since creep tests are in practice performed with
static loading, a damping method is required to convert the dynamic data into static results.
An effective method that provides this conversion is adaptive dynamic relaxation (ADR) (Hu et
al., 2014). The ADR method is used in this paper for each PD numerical test.

(3.27)

4. Experiment for validation

A creep experiment is performed to obtain creep data to be used as a reference for the numerical
test. The material used for the experiments was polypropylene (PP). The size of the specimen
conformed to ASTM D-638 and is 57 mm long, 13 mm wide, and was 3.2 mm thick. The speci-
mens were manufactured using an injection molding machine, namely Battenfeld BA 250 CDC
Injection Molding. The creep tests were performed using a Zwick Z100 universal machine. The
values of the fixed loads applied to the specimens during the creep test were 12.5 MPa, 13 MPa,
13.5 MPa, 14 MPa and 14.5 MPa. The experimental procedure for the creep test was based on
ASTM D2990.
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5. Results and discussion

Prior to the numerical test, the values of the nonlinear viscoelastic parameters in scalar equations
(3.14)-(3.18) were obtained from the optimization process by using the least square method with
the experimental data as a reference. The values of the parameters are listed in Table 1.

Table 1. Optimized values of parameters in the viscoelastic constitutive equations

No. | Parameter Optimized Unit No. | Parameter Optimized Unit
value value

1 K1 0.04 (MPa-s)~L || 7 O —120 kPa
2 Ko 0.10 107651 8 P 1.56 —
3 K3 0.014 107 °s7! 9 E. 360 MPa
4 k 23.98 MPa 10 oy 0.529 MPa
5 as 0.201 — 11 as 7 —
6 b 0.248 — 12 n 15 —

The curves resulting from the creep experiment can be seen in Fig. 3. In Fig. 3, one can
calculate the percentage difference between the numerical curve and the experimental curve. The
difference is calculated by subtracting the experimental strain value with the numerical strain
value at each time ¢t = 1,2,3,...,%5,4. Then, each subtraction is divided by the experimental
strain value at each time point to obtain the percentage difference at each time point in the
curve. Then all the percentage differences are averaged to obtain the percentage difference for
the whole curve. The percentage differences for all curves with different loadings are shown
in Table 2. The overall percentage difference between the numerical and experimental data is
15.85%, which is the average value for the percentage differences of all five curves.

50 — ° A :
X 45 . N 'S " 14.5 MPa ||
= y o A ® 14.0 MPa
‘E 40 il @ / ‘ N
£ L .. i f A 13.5 MPa
n [ ] ’/
35 -t ! ! ¢ 13.0 MPa -
) ’f
20 i p = 125 MPa | |
4 : ’ [ - - = Numerical
25 ‘
20
15
10
S e
0 300 350
Time [s]

Fig. 3. Comparison between experimental (polypropylene) and PD numerical creep tests

The curve of the strain rate of the secondary stage characterises the nonlinearity of the creep
behavior. The gradients of the secondary creep stage of all experimental and numerical curves
in Fig. 3 are calculated, and the curve of the strain rate of the secondary stage for experimental
and numerical data can be plotted as in Fig. 4. The average error between the strain rate of the
secondary stage of experimental and numerical data is notable and is 21.83%.
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Table 2. Percentage difference between numerical and experimental data for each curve

Creep stress | Percentage of difference
[MPal] between num-exp [%]
12.5 20.65
13.0 17.11
13.5 14.20
14.0 11.52
14.5 15.77
Overall 15.85
0.10

—@— Experimental

7| =—@— Numerical /

:9'”/////

O | |
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Load [MPa]
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Fig. 4. Graph of the strain rate of the secondary creep stage against the applied load

There are several factors that cause significant values of the error. First, the numerical creep
curves are bumpy, and the strain does not increase uniformly. This is because the number of
bonds entering the tertiary creep stage does not increase smoothly, but instead increases with
staircase behavior, as shown in Fig. 5a. This is due to the small number of nodes causing the
lamination effect, in which all nodes within a layer perpendicular to the applied load tend to
deform uniformly. Thus, when all nodes in the layer enter the tertiary stage simultaneously,
the staircase effect occurs. Figure 5b shows the numerical creep curve generated by the same
simulation that generates the curve in Fig. 5a. The creep curve shows an obviously uneven
increase of the load. Because of the bumpy curves, the slope of the secondary creep stage cannot
be accurately measured because it is unclear when the transition from the secondary stage to
the tertiary stage occurs. Therefore, this is a factor in the remarkable error in the numerical
gradients of the secondary creep stage as in Fig. 4.

Secondly, the primary creep stage has a relatively longer period in the numerical curves
than in the experimental curves. The main reason for this effect is that the adaptive dynamic
relaxation (ADR) method requires a long time before the strain reaches the equilibrium value.
This problem can be solved by optimizing the ADR parameters to achieve faster convergence,
and this solution requires a deeper understanding of the ADR method. Alternatively, the periods
of the secondary and tertiary creep stages can be set longer to obtain a smaller ratio to the period
of the primary creep phase, but this solution requires a longer simulation time.

Thirdly, the creep curves at a low load, i.e., at 12.5 MPa and 13 MPa, have a large error
because as the value of strain decreases and approaches 1%, the behavior is transiting from
nonlinear to linear viscoelasticity (Drozdov, 2010; Gao et al., 2020). The nonlinear viscoelastic
equation is not suitable for use at low strain values. The transition from linear to nonlinear
viscoelasticity should be considered in the development of viscoelastic constitutive formulas in
the future.
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Fig. 5. (a) Number of bonds that enter the tertiary creep stage against time. (b) Numerical creep curve
from the same simulation as the curve in (a)

The result for the creep fracture by using PD simulation with the ADR method is shown
in Fig. 6b. A fractured polypropylene specimen from the same experiment that produces result
shown in Fig. 3 is used for comparison with the fractured numerical specimen, and a photo of the
specimen is shown in Fig. 6a. There is a number of similarities between the fractured numerical
model and the fractured experimental specimen. Firstly, the shape of the necking has a close
resemblance to the experimental specimen where the necking is large. Since the number of nodes
in this model is less compared to the two-time method model, the roughness of the crack surface
is unclear. However, comparing the upper surface with the crack surface, it can be seen that the
crack surface is rougher than a normal surface. In both numerical and experimental specimens,
the crack occurs on one side of the specimen and not in the centre.

(a)

Fig. 6. (a) The shape of the fractured experimental specimen due to a creep test. (b) Numerical
specimen shape after the creep test completed

Another problem related to fracture behavior is the location of the crack. From numerical
creep tests using the two-time method and the ADR method, it appears that failure occurs near
the point where the load is applied. This behavior is related to dynamic loading, when the load
is suddenly applied to the specimen, causing a stress wave that begins at the point of loading
and propagates across the specimen. This is undesirable behavior since the creep test is a static
load test. This dynamic loading behavior is investigated by placing a notch in the centre of the
specimen to see if the creep test failure occurs at the notch or not. The depth of the notch is
varied to see how this variable affects the failure point.

Figure 7 shows the crack position for specimens with different notch depths subjected to a
creep test at the beginning (left) and at the end (right) of the test. The four specimens have
different values of notch depth, i.e., 3 nodes spacing, 5 nodes spacing, 7 nodes spacing and
9 nodes spacing. The width of the specimen is 10 node spacing. The load is applied to the top
and bottom of the specimen. For all specimens, the fracture location is at the notched location,
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except for the specimen with a notch depth of 3 nodes spacing, where the fracture occurs at the
top of the specimen. In practice, the crack certainly occurs at the notch within the specimen due
to stress concentration in the notch. The reason for the fracture behavior in specimens with a
notch depth of 3 nodes spacing is the dynamic loading to which the specimen is subjected. The
bonds at the ends of the specimen expand earlier than the bonds in the centre of the specimen,
so the bonds at the ends break earlier than the bonds in the centre of the specimen. The solution
to this problem is to create numerical simulations with static loading instead of dynamic loading.

(a) (b) (c) (d)
50~ 50~ 60 60 60~ 60~ 50~ 50~
a =
40- 40 50 50 501
.ﬂl‘ 407 407 COVOTCOTOO
@
30 gmme=  30- 40 40F 40
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200 20+ 30- 30F 3 30 §
. s 3 201
10F 10k 20 200 i 20¢ §
: : 10F
ok & o e 10k ’ 1of &
comgre 3
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10k 10k ob & ok
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Fig. 7. Fracture location of numerical creep specimens with different notch depths

Additionally, to visualize the stress distribution of the PD numerical model as commonly
practiced in conventional FEM, it can be achieved by considering the resultant force of the nodes
within the numerical model. The resultant load is calculated by using Eq. (2.1). The stress in
the model can be represented by the resultant load since there is no area parameter in the PD
model. If the cross-sectional area of the bond is assumed to be equal to 1, the stress at a point
is equal to the resultant load at the same point. Several examples of the resultant load variation
in the PD numerical specimen are shown in Fig. 8. The colour of each node describes the value
of the resultant load exerted on the node. Red means the highest range of the resultant load
value, followed by orange, yellow, light green, dark green, light blue and dark blue.
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Fig. 8. Distribution of load in the creep test in: (a) specimen without notch, (b) specimen with 3 nodes
length depth, (c) specimen with 7 nodes length depth. (d) Distribution of stress in the creep test in a
FEM specimen (Goyal et al., 2013)
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In the first three diagrams in Fig. 8, the highest resultant load is experienced by the nodes
at the top and bottom surfaces. This is due to the dynamic loading that is applied to the top
and bottom surfaces of the specimen, and this behavior can be neglected. In Fig. 8a, the nodes
that experience the resultant load in green range are separated in the middle of the specimen.
This is again due to the dynamic loading that causes a rippling manner in the load distribution.
In Fig. 8b and Fig. 8c, it is observed that the nodes near to the notches received a higher
resultant load than the nodes in the other part of the specimens. This PD result is equivalent to
the FEM stress distribution diagram as shown in Fig. 8d (Goyal et al., 2013) where the stress
concentration appears at the notch. In conclusion, these pictures of the distribution of resultant
load in PD numerical specimens are equivalent to the FEM stress distribution diagram.

6. Conclusion

The PD simulation of viscoelastic creep behavior is validated by an adequate similarity in
numerical-experimental data comparison. The numerical model is able to simulate four stages of
creep i.e. the primary stage, secondary stage, tertiary stage and fracture. The numerical fractured
specimens show apparent similarities with the experimental fractured specimen. The numerical
test of specimens with a notch of different depth describes the unwanted dynamic loading in
the PD simulation, since the creep test is a static loading test. In addition, the resultant load
distribution diagram obtained from the PD creep test is equivalent to the conventional stress
distribution diagram of the FEM. In summary, PD models on viscoelastic creep with rupture
behavior are established, and these models can offer an improved fracture prediction in practice.
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